The age of the Anthropocene is characterized by planet cycles modifications and natural systems overwhelming. Current theory on land use change recognizes that there are multi-scalar processes that vary according to the biophysical and socioeconomic contexts of each place. The Andean region in Colombia is a highly diverse region that historically has maintained a high human presence associated to the development of multiple productive activities. The main objective of the present work is to describe the regional relationship between the different typologies of landscape and the socioeconomic structure through multivariate analysis. We search for significant social variables that allow the formalization of human relations with land use and serve as future predictors for modeling trajectories of ecosystem change in the department of Tolima. The relation between ecosystems and socioeconomic structure of the municipalities was considered through simple models, using two matrices of data that describe the 47 municipalities through 17 landscape variables and 24 socioeconomic variables. The first matrix represent the value of the variables in the territory, and the second matrix corresponds to the value of the socioeconomic variables in the municipalities. Landscape variability trends are explained using principal component analysis and hierarchical classification analysis. The interdependence between landscape typology and socioeconomic structure is expressed through linear regressions, being independent variables the socioeconomic descriptors and the dependent variables, the coordinates of these in the axes of the landscape PCA. Landscape zoning describes a gradient of intensification and diversification of land use and transformation (explaining a variance of 54.64%). First axis (30.89 %) describes a gradient from land-intensive landscapes to mosaics of crops in which productive activities are combined. It relates to the degree of human well-being and the degree of intensity with which they devote themselves to the sector (R2 = 0.83, P <0.001). The second axis (23.68 %) shows a landscape transformation gradient, from the highly transformed municipalities to those with natural landscapes predominating. This gradient relates with the types of production and the degree of connectivity to the main cities (R2 = 0.947, P <0.001). This work is the first approach to understand the interdependence between nature and society for the socio-ecological planning of this territory, combining contrasted landscapes typologies with social characteristics. We hypothesize that it has a link with the dynamics of armed conflict that Colombia experienced along last decades and we highlights the strong meaning of our results to understand future social-ecological transformation of this country after peace processes.
Ayram, C., Mendoza, M., Etter, A., Pérez, D. 2017. Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecological Indicators 72: 598-909.
Bailed, R. G. 1987. Suggested hierarchy of criteria for multi-scale ecosystem mapping. Landscape and Urban Planning 14: 313 – 319.
Biermann, F., Bai, X., bondre, N., broadgate, W., Arthur, C – T., Pauline, O., Erisman, J., Glaser, M., van der Hel, S., Lemos, C., Seitzinger, S. Seto, K. Down to Earth: contextualizing the Anthropocene. Global Environmental Change 39: 341 – 350.
Brondizio, E., O’Brien, k., Bai, x., Biermann, F., Steffen, W., Berkhput, F., Cudennec, C., Lemos, M., Wolfe, A., Palma – Oliveira, J., Arthur, C – T. 2016. Re-conceptualizing the Anthropocene: A call for collaboration. Global Environmental Change: 318 – 327.
Crutzen, P. and Stoermer, E. 2000. The Anthropocene. Global Change Newslett 41: 17-17. International Geosphere Biosphere Program (IGBP).
Crutzen, P. 2002.Geology of mankind. Nature 415, 23.
De Aranzabal, I; Schmitz, M. F.; Aguilera, P.; Pineda, F. 2008. Modelling of landscape changes derived from the dynamics of socio-ecological systems. A case of study in a semiarid Mediterranean landscape. Ecological indicators 8 (2008) 67 2 – 68 5.
Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., & Verburg, P. H. 2013. Used planet: A global history. Proceedings of the National Academy of Sciences, 110 (20), 7978-7985.
Etter, A y Wyngaarden, W. 2000. Patterns of landscapes transformation in Colombia, with emphasis in the Andean Region. Ambio. Vol. 29: 432 – 439.
Ferrara, C., Barone, P., Salvati, L. 2015. Towards a socioeconomic profile for areas vulnerable to soil compaction? A case study in a Mediterranean country. Geoderma 247 – 248: 97 – 107.
Lee, C-L., Huang, S-L, Chan, S-L. 2009. Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei Metropolitan Region. Ecological Modelling 220: 2940 – 2959.
Liu, J., T. Dietz, S. Carpenter, M. Alberti, C. Folke, E. Moran, A. Pell, P. Deadman, T. Kratz, J. Lubchenco, E. Ostrom, Z. Ouyang, W. Provencher, C. Redman, S. Schneider y W. Taylor. 2007. Complexity of coupled human and natural systems. Science, 317 (5844): 1513-1516.
MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297.
Picard, N., France, C., Bar-Hen, A. 2012. A criterion based on the Mahalanobis distance for cluster analysis with subsampling. Journal of Classification 29: 23 – 49. DOI: 10.1007/s00357-012-9100-9.
Potschin, M. And Haines-Young, R. 2011. Introduction to the special issue: Ecosystem services. Progress in Physical Geography. 25 (5): 571 – 574.
Salvati, L. y Serra, P. 2016. Estimating rapidity of change in complex urban system: A multidimensional, local-scale approach. Geographical Analysis 48: 132 – 156.
Sánchez – Cuervo, A., Aide, M., Clark, M., Etter, A. 2012. Land cover change in Colombia: Surprising forest recovery trends between 2001 and 2010. PLoS ONE 7 (8): e43943.
Sánchez – Cuervo, A. y Aide, M. 2013. Identifying hotspots of deforestation and reforestation in Colombia (2001 – 2010): implications for protected areas. Ecosphere 4 (11) – 143.
Schmitz, M. F.; de Aranzabal, I.; P. Aguilera; Rescia, A.; Pineda, F. D. 2003. Relationship between landscape typology and socioeconomic structure. Scenarios of change in Spanish cultural landscapes. Ecological Modelling 168 (2003): 343 – 356.
Schmitz, M. F.; Pineda, F. D.; Castro, H.; de Aranzabal, I. y Aguilera, P. 2005. Paisaje cultural y estructura socioeconómica. Valor ambiental y demanda turística en un territorio mediterráneo. Dirección General de la Red de Espacios Naturales Protegidos y Servicios Ambientales. Consejería de Medio Ambiente. Junta de Andalucía. 106 Pág. ISBN 84-96329-39-0.
Schmitz, M. F.; de Aranzabal, I. y Pineda, F. D. 2007. Spatial analysis of visitor preferences in the outdoor recreational niche of Mediterranean cultural landscapes. Environmental Conservation 34 (4): 300–312.
Schmitz, M. F.; Matos, D. G.; de Aranzabal, I.; Ruiz-Labourdete, D.; Pineda, F. D.2012. Effects of a protected area on land-use dynamics and socioeconomic development of local populations. Biological Conservation 149 (2012): 122 – 135.
Williams, C. and Heglund, P. 2009. A method for assigning species into groups based on generalized Mahalanobis distance between hábitat model coefficients. Environ Ecol Stat 16: 495 – 513. Doi 10.1007/s10651-008-0093-9.
- Log in to post comments